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Abstract This study develops an effective and robust method to mine bitemporal and dual‐polarization
synthetic aperture radar (SAR) imagery information for coastal inundation mapping, based on deep
convolutional neural networks. The specially tailored deep convolutional neural network‐based SAR coastal
flooding mapping network (SARCFMNet) leverages two modifications to improve the accuracy
and robustness: the physics‐aware input information design and the regularization. The proposed
SARCFMNet is applied to the mapping and impact analysis of the coastal inundation caused by 2017
Hurricane Harvey near Houston, Texas, USA. Six pairs of Sentinel‐1 SAR images are analyzed along with
corresponding ground truth data from Copernicus Emergency Management Service Rapid Mapping
products and land‐cover types from Google Earth and OpenStreetMap. Flooded areas of 4,000 km2 are
extracted and analyzed. In an analyzed scene, 76% of the flooded area was agriculture area like pasture and
cultivated crops field. A flooding map series shows the inundation shrinking rate is about 1% of the analyzed
scene per day after the passage of Harvey. However, there was a delayed inundation in Glen Flora, Texas,
after the heavy raining period. The average mapping accuracy and F1 score, that is, the harmonic mean of
recall and precision, are 0.98 and 0.88, respectively. The impact of wind and cost‐sensitive loss functions on
the development of SARCFMNet is also discussed. This study demonstrates the proposed method can
accurately map hurricane‐induced inundation. The method can also be readily extended to other
multitemporal SAR imagery classification applications.

Plain Language Summary Coastal flooding caused by hurricanes has a huge impact on the
safety and properties of people in coastal areas. Coastal flooding mapping using synthetic aperture radar
(SAR) data is a low‐cost and wide‐coverage means; moreover, SAR has day‐and‐night, all‐weather
observation abilities. High‐accuracy and robust coastal flooding mapping from SAR imagery information
will help the management to formulate more targeted responses and the researchers to better understand
coastal flooding mechanisms and develop more precise forecasting models. Based on deep convolutional
neural networks, a specially tailored SAR coastal flooding mapping network method is developed to mine
bitemporal and dual‐polarization SAR imagery information for coastal flooding mapping. The performance
of the proposed SAR coastal flooding mapping network is demonstrated by mapping the coastal flooding
near Houston, Texas, USA, after 2017 Hurricane Harvey. The study verifies that the mapping accuracy and
robustness of the proposedmethod are better than those of the classic and widely applied deep convolutional
neural network method and also shows the mapping products contribute to a better understanding of the
geospatial and temporal characteristics of coastal flooding.

1. Introduction

Coastal flooding caused by hurricanes is an example of compound hazards. It is the combination of storm
surge and rainfall‐induced freshwater river flooding. Coastal flooding has a huge impact on safety and prop-
erties of people in coastal areas. For example, 2017 Hurricane Harvey stalled over the heavily populated
Houston area on 26–28 August and brought extreme precipitation. This resulted in unprecedented flooding
with over 80 fatalities (van Oldenborgh et al., 2017). According to the National Hurricane Center, Harvey
caused over 125 billion dollars of damage, making it the second‐costliest hurricane ever recorded in the
United States.
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Unfortunately, coastal flooding could get even worse in the future. Higher temperature may contribute to
higher moisture in the atmosphere and increasing the flood's severity (Vahedifard et al., 2016). Patricola
and Wehner (2018), using simulations, found that climate change had enhanced the average and extreme
rainfall of hurricanes Katrina, Irma, andMaria. Human activities, such as land‐cover changes and urbaniza-
tion, can intensify the impact of coastal flooding on infrastructure (Bilskie et al., 2014). W. Zhang et al. (2018)
found that urbanization exacerbated not only the flood response but also the hurricane total rainfall. These
studies should make us alert for the intensified flooding on the highly urbanized and heavily populated
coastal areas.

In this context, high‐accuracy mapping of hurricane‐induced coastal inundation is needed to assist coastal
managers to make better planning and researchers to better understand coastal inundation mechanisms
and develop more precise forecasting models (Hostache et al., 2018). Common methods for this task include
ground surveying and remote sensing (RS)‐based information extraction. Ground surveying is direct and
accurate, but it is very costly and there are some inaccessible areas. Coastal inundationmapping fromRS data
is a low‐cost way, and it can cover all the potential flooded areas. According to different platforms, RS‐based
mapping can be mainly divided into aerial and satellite RS‐based means. The aerial RS‐based means may be
limited by weather reasons. According to different sensors, RS‐based mapping can be mainly divided into
optical‐ and synthetic aperture radar (SAR)‐based means. Compared to optical images, SAR images are dif-
ficult to understand. However, SAR is sensitive to surface water and can provide an all‐weather, day‐and‐
night observation means. Therefore, in this study, we focus on the coastal inundation mapping from
satellite‐based SAR imagery. The Sentinel‐1 SAR satellites provide a free and open data source for this study.

The coastal inundation mapping from SAR images can be divided into three main types of methods. The first
type is traditional segmentation and classification of SAR backscattering information, including histogram
thresholding (Chini et al., 2017), active contour (Horritt, 1999), region growing (Matgen et al., 2011), change
detection (Bazi et al., 2005), and statistical modeling (Giustarini et al., 2016). The second type is based on the
target decomposition theorem of polarimetric SAR images (Park et al., 2013; Plank et al., 2017; Sato et al.,
2012). These two types of methods use human‐crafted and predefined features for pattern classification in
SAR backscattering or polarimetric information. Their problems of achieving robust flooding mapping are
rooted in different influential factors: (1) speckle noise of SAR images; (2) SAR system factors from the inci-
dence angle and polarization; (3) meteorological influences from wind and rainfall; and (4) environmental
influences from buildings, dense vegetation, and water‐like areas. The third type, the deep convolutional
neural network (DCNN)‐based methods, is promising for solving these problems. For the DCNN models,
an advanced type of deep learning models, the features useful for robust classification are dug out from data,
instead of being predefined. This idea is repeatedly verified in the computer vision community (Russakovsky
et al., 2015) as well as in the geophysics community (Reichstein et al., 2019; J. Zhang et al., 2018;
Anantrasirichai et al., 2018). There are several existing studies for DCNN‐based flooding mapping.
Multi3Net was proposed for flooded buildings extraction (Rudner et al., 2018). This study inherited the idea
from building footprint extraction in urban areas. It is essential to merge postevent very high resolution opti-
cal images into the framework, but this data source is difficult to obtain in disasters like hurricanes. Kang et
al. (2018) verified that the DCNN‐based flooding detection method is more accurate than the aforemen-
tioned Type‐1 and ‐2 methods for SAR images, but this study treated each temporal and each polarization
SAR image separately.

Considering that the DCNNmodels have the potential to solve the problems of robust inundation mapping,
we develop a DCNN‐based SAR coastal flooding mapping network (SARCFMNet). The SARCFMNet is a
specially tailoredmodel for SAR coastal inundationmapping. It contains twomodifications to improve accu-
racy and robustness: (1) the physics‐aware input information design integrates SAR RS physics of flooding
mapping with the DCNN framework and fuses temporal and polarimetric information for more robust map-
ping and (2) the regularization design improves the model's generalization ability. The proposed
SARCFMNet is applied to the mapping and impact analysis of the coastal inundation caused by 2017
Hurricane Harvey near Houston, Texas, USA. Six pairs of Sentinel‐1 SAR images are analyzed along with
corresponding ground truth data from Copernicus Emergency Management Service (EMS) Rapid
Mapping products (Copernicus EMS Rapid Mapping, n.d.) and land‐cover types from Google Earth and
OpenStreetMap. In these images, the flooded areas with a size of about 4,000 km2 are extracted
and analyzed.
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The contributions of this study include

• The SARCFMNet shows better and more robust performance, compared to the classic and widely applied
DCNN method. This confirms the physics‐aware input information and regularization designs can
improve the accuracy and robustness of the DCNN models for inundation mapping, and other applica-
tions involving multitemporal SAR image classification.

• Based on the mapping products, the geospatial and temporal characteristics of the coastal flooding caused
by Harvey is analyzed and discussed.

• The wind influence is discovered in the DCNN‐based method, which indicates the DCNN models taking
into account wind influence will be more robust in practical use.

• The cost‐sensitive losses for the DCNN‐based coastal flooding mapping are explored, which is useful for
more adaptive models considering performance costs.

2. Data

Hurricane Harvey affected Houston area from the end of August to the beginning of September 2017. During
this period, we acquire six pairs of Sentinel‐1 SAR images with VV + VH dual‐polarization in the study
region, five pairs with the Interferometric Wide (IW) swath mode, and one pair with the Stripmap (SM)
mode. The Sentinel‐1 data are free and publically available. The parameters of the data used in this study
are listed in Table 1. The actual coverage areas of the SAR images are larger than the coverage areas listed
in the table. This is because we cut the images to geographically match the preevent and postevent images.
It is worth noting that the postevent image of the IW01 pair is influenced by wind. Harvey that degenerated
to tropical storm still brought strong wind to the scene covered by the postevent image of the IW01, about 20
m/s (Weather Underground, n.d.). The ground truth is delineated with the help of Copernicus Emergency
Management Service Rapid Mapping products (Copernicus EMS Rapid Mapping, n.d.) and land‐cover types
from Google Earth and OpenStreetMap.

Figure 1 gives a visual illustration for the SM01 pair as an example. Subfigures (a) and (b) are the pree-
vent and postevent images for the VV polarization, respectively. Subfigures (d) and (e) are the preevent
and postevent images for the VH polarization, respectively. Subfigures (c) and (f) are the pseudo color
images for the VV and VH polarizations, respectively. In the red‐green‐blue pseudo color image, the blue
channel represents the normalized radar cross section (NRCS) information of the preevent image, the red
channel represents the NRCS information of the postevent image, and the green channel represents the
difference information between the postevent and preevent NRCS. The NRCS and difference information
will be described in the next section. In the pseudo color images, the flooding areas are highlighted in
blue. Subfigures (g) and (h) are the Google Earth image and OpenStreetMap of the area covered by the
SM01 pair, respectively. We can see that the SM01 covers Houston and its western and southern
neighboring areas.

3. Methodology
3.1. Preprocessing

The aim of the preprocessing is to prepare data for training and testing. It is composed of the following steps:

1. Apply orbit file: It provides the accurate satellite orbit file for the SAR product.
2. Sliding‐window filtering: A 7 × 7 sliding‐window filter was applied to all SAR images.

3. Radiometric calibration: It is applied to the SAR image so that the pixel values after calibration truly
represent the radar backscattering information of the reflecting surface. It converts the SAR image infor-
mation to the NRCS information (σ0).

4. To dB: The σ0 is converted to decibel (σ0dB, logarithmic scale).

5. Range‐Doppler terrain correction: It geocodes the SAR image (σ0
dB) into a geographic coordinate system

(World Geodetic System 84) and masks out ocean areas with the digital elevation model information.
After the conversion, pixel spacing in this study is 8.9832 × 10−5° in both latitude and longitude.

6. Subset generation: For each pair listed in Table 1, since the preevent and postevent SAR images are both
converted into the same geographic coordinate system. We cut the subsets using the same coverage area
(listed in Table 1) from the preevent and postevent images. The subsets are matched geographically.
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It is worth mentioning that the above preprocessing procedure is implemented by the Sentinel Application
Platform software. It can be easily reproduced and revised. After the preprocessing, the preevent and poste-
vent image coverages are geometrically matched. Each pair is cut into 256 × 256, nonoverlapping samples. If
the ratio of the flooding area to the sample size is lower than 1 × 10−4, this sample is not considered for spar-
sity. The sample number of each pair is listed in Table 1.

3.2. SARCFMNet Design

The SARCFMNet method is based on the U‐Net framework (Ronneberger et al., 2015) for U‐Net's verified
effectiveness in the research community. The SARCFMNet is shown in Figure 2. The U‐shaped network
consists of two paths: an encoding path to reduce the spatial size and extract high‐level feature information
for accurate classification, and a decoding path to combine the feature and spatial information with a
sequence of upsampling and concatenations with high‐resolution features. As shown in Figure 2, the encod-
ing path (left part) is composed of 3 × 3 convolutions with the rectified linear unit (ReLU) activation and 2 ×
2 pooling processes. The decoding path (right part) is composed of 2 × 2 upsampling processes and 3 × 3 con-
volutions with the ReLU activation. The concatenations fuse multiscale feature information. The numbers
near the pooling and upsampling processes indicate the dimensions of the features before the processes.
The coastal flooding mapping problem is essentially a binary, pixel‐wise classification problem. Therefore,
as shown in Figure 2, the last layer of the network is a 1 × 1 convolution with the Sigmoid activation. The
loss function is the binary cross entropy (BCE) for binary classification (Lin et al., 2017). The performance
evaluation metric is pixel‐wise classification accuracy.

It is worth noting that, in the SARCFMNet, wemade two specially tailoredmodifications to U‐Net (Figure 2).
The first modification is the physics‐aware input information design. For this study, we consider six different
input information designs listed in Figure 2. In this figure, σ represents the NRCS. Its superscript indicates
preevent or postevent. Its subscript indicates VV or VH polarization. Directly, bitemporal SAR information
with single polarization, denoted as VV or VH, is often used in the related studies (Chini et al., 2017;
Giustarini et al., 2016; Kang et al., 2018). In this study, for the input information design, based on the radar
RS physics, we have two considerations: (1) theVV andVHpolarization information should be fused, for they

can compensate each other; and (2)σpost
VV −σpre

VV andσ
post
VH −σpreVH; that is, the difference images for the VV and VH

polarizations, respectively, should be added. From the preprocessing, we know σpostVV −σpreVV and σpostVH −σpreVH

represent the log ratios of intensity for the VV and VH polarizations, respectively. The log ratio is an impor-
tant information source for SAR image change detection (Bazi et al., 2005). Based on the above two consid-
erations, for the SARCFMNet, we propose to use the input information design denoted as DUAL+Diff
listed in Figure 2. The DUAL+Diff design fuses bitemporal, log ratio, and dual‐polarization information
sources together and includes them in the DCNN framework. Inclusion of these information sources inte-
grates the SAR RS physics for coastal inundation mapping with the information mining abilities of the
DCNN model. It can make the DCNN model suitable for the coastal inundation mapping task and will
improve the mapping accuracy and robustness.

The second modification is to implement regularization to improve the model's generalization ability. For
DCNN models, model overfitting limits their generalization abilities. If the model overfits, it can get very
good performance on training data sets, but rather bad performance on testing data sets. Although dropout
is an effective way to prevent overfitting for fully connected layers, it is often less effective for convolutional

Table 1
Sentinel‐1 Data Used in This Studya

Preevent timeb Postevent timeb Coveragec Pixel spacing Sample number

IW01 08–05, 00:26 08–29, 00:26d N29.5°W96.75°, N28.75°W95.0° 10 m 1973
IW02 08–05, 00:26 08–29, 00:26 N31.0°W97.25°, N30.0°W95.0° 10 m 1384
IW03 07–31, 00:18 09–05, 00:18 N30.5°W95.25°, N29.5°W92.75° 10 m 1769
IW04 08–24, 12:22 09–05, 12:22 N30.5°W97.0°, N29.0°W94.75° 10 m 1746
IW05 08–18, 12:22 08–30, 12:22 N30.5°W97.0°, N29.25°W94.75° 10 m 2184
SM01 08–23, 12:30 09–04, 12:30 N30.25°W96.25°, N29.0°W95.25° 10 m 993

aThey are all from Sentinel‐1 Ground Range Detected products. bThe time form is MM‐DD, hh:mm Coordinated Universal Time (UTC). cThe coverage is
represented by up‐left and down‐right geographical coordinates. dThe postevent image is influenced by wind.
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layers (Ghiasi et al., 2018). Motivated by Tompson et al. (2014), in the proposed SARCFMNet, we add the
SpatialDropout2D (SD2D) layer before the classification layer, as shown in Figure 2, to implement
regularization to improve the model's robustness.

4. Results and Discussions
4.1. Validation of SARCFMNet Performance

As listed in Table 1, in all six pairs, we generate 10,049 samples. We randomly select about 20% samples from
each pair to create a data set with 2,000 samples, denoted as the S2000 data set. In the training process, the

Figure 1. Visual illustration for the SM01 pair as an example. (a) and (b) are the preevent and postevent images for the VV polarization, respectively.
(c) Pseudocolor image for the VV polarization. (d) and (e) are the preevent and postevent images for the VH polarization, respectively. (f) Pseudocolor image for the
VH polarization. (g) Google Earth image in the area covered by the SM01. (h) OpenStreetMap in the area covered by the SM01.
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S2000 data set is divided into two groups: 70% (1,400 samples) for training and 30% (600 samples) for
validation. The parameter for the SpatialDropout2D is set to 0.5. Therefore, in the following performance
presentation, the result with the SpatialDropout2D is denoted as _SD2D0.5. In this study, the training and
testing of the network are implemented by Keras. We use Keras's default Adam optimizer. The batch size
is set to 32, and the number of epochs is set to 300. The model parameters are determined by minimizing
the validation loss.

The performance curves on the training and validation groups of the S2000 data set are shown in Figure 3. In
this figure, each subfigure is composed of the loss and accuracy curves. This figure shows the performance
comparison in the following three aspects:

1. In subfigures (a), (b), and (c), we compare the input information designs VV and VV+Diff, VH and VH
+Diff, and DUAL and DUAL+Diff. In these three subfigures, we can observe, from the comparison of
validation losses and validation accuracies, VV+Diff, VH+Diff, and DUAL+Diff are better than VV,
VH, and DUAL, respectively. The log‐ratio information can improve the mapping performance, and
should be included in the input information.

2. In subfigure (d), we compare the input information designs VV+Diff, VH+Diff, and DUAL+Diff. In this
subfigure, from the comparison of validation losses and validation accuracies, DUAL+Diff is better than
VH+Diff, and VH+Diff is better than VV+Diff. The dual‐polarization fusion can improve the mapping
performance, and should be considered in practical use.

3. In subfigure (e), we compare the input information design DUAL+Diff without regularization and with
SpatialDropout2D for regularization. In this subfigure, we can observe that, with regularization, the vali-
dation performance is very close to the training performance. Even though the training performance
with regularization is worse than the training performance without regularization, the validation perfor-
mance with regularization is better than the validation performance without regularization. This indi-
cates that the regularization can improve the model's generalization ability in practical use and should
be applied.

In Table 2, the model trained on the S2000 data set is applied on the data sets listed in Table 1. The column
name indicates the input information design and if the regularization is applied. The row name indicates on
which data set the trained model is applied. In each block, there are four numbers. They are classification
accuracy, recall, precision, and F1 score. Recall is the ratio of the pixel number of correctly detected

Figure 2. Flowchart of the proposed SARCFMNet. The two specially tailored modifications to U‐Net are highlighted.
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Figure 3. Loss and accuracy curves on the training and validation groups of the S2000 data set. (a) Comparison between VV and VV+Diff. (b) Comparison between
VH and VH+Diff. (c) Comparison between DUAL and DUAL+Diff. (d) Comparison between VV+Diff, VH+Diff, and DUAL+Diff. (e) Comparison between DUAL
+Diff and DUAL+Diff_SD2D0.5.
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flooding areas to the pixel number of ground truth. Precision is the ratio of
the pixel number of correctly detected flooding areas to the pixel number
of predicted flooding areas. A higher recall value means the model misses
less flooding areas. A higher precision value means the model extracts less
false alarms. F1 score is the harmonic mean of recall and precision. The
last row is the weighted average of the performances on the above six data
sets. The weights are the sample number proportions in the total sample
number of the six data sets. In each row, the best classification accuracy
and F1 score are highlighted in bold. From this table, we can have two
observations: (1) the dual‐polarization fusion improves the mapping per-
formance and (2) the regularization improves the model's generalization
ability. These are consistent with the above observations from Figure 3.

Figure 4 gives the visual presentation of the flooding mapping perfor-
mance on the SM01 data set, which we select as an example for presenta-
tion. Subfigures (a) and (b) show the ground truth and predicted flooding
mapping with the SARCFMNet (DUAL+Diff_SD2D0.5). By comparing
(a) and (b), the predicted mapping is very close to the ground truth, which
visually confirms the effectiveness of the proposed method.

4.2. Geospatial and Temporal Analysis of Flooding

Based on the flooding mapping products generated by the SARCFMNet,
the geospatial and temporal analyses of the coastal flooding caused by
Harvey are performed.

We select the flooding mapping product of the SM01 pair, as shown in
Figure 4b, to perform the geospatial analysis. The ancillary data for the
geospatial analysis are the U.S. Geological Survey (USGS) National
Elevation Dataset (USGS National Map, n.d.), the 2016 National Land
Cover Database (Yang et al., 2018), and the water occurrence of the
Global Surface Water Mapping Dataset (Pekel et al., 2016). They are
shown in Figures 4d–4f. The National Land Cover Database legend is
shown in Figure 4g.

Based on the flooding mapping product and ancillary data, we can get the following geospatial analysis
conclusions:

1. The flooding area is about 284 km2 and accounts for about 3% of the whole scene. After filtering the flood-
ing mapping product with a simple filter (disk shape, radius = 100 pixels), we can generate a flooding
heat map, which is superimposed onto the preevent SAR imagery and shown in Figure 4c. The heat
map clearly shows the severity of the flooding. The most severely flooded areas are in the southern part
of Houston.

2. The flooded area elevation and the scene elevation distributions are shown in Figure 4h, generated from
Figure 4d. It shows the flooded area elevation is distinctly lower than the scene elevation. The flooding is
more likely to happen and stay in places with lower elevation.

3. The proportions of land cover types in the flooded areas are shown in Figure 4i, generated from Figure 4e.
It shows the dominant land cover types in the flooded areas are pasture and cultivated crops. Their com-
bined proportion is higher than 76%. It means that the flooding had a huge negative impact on
agriculture.

4. The history water occurrence distribution in the flooded areas is shown in Figure 4j, generated from
Figure 4f. It shows the history water occurrence in the flooded areas is very close to 0. It means the
extracted areas represent an extremely abnormal situation, and people should be alert to this situation.

The flooding mapping products from IW01, IW04, IW05, and SM01 have an overlapped area. We use this
overlapped area to perform the temporal analysis of the flooding. The temporal analysis result is shown in
Figure 5. The product sequence is described by the calendar in the lower right of this figure. The upper part
of this figure shows the flooding duration probability of the overlapped area. It can help us to see the

Table 2
Coastal Flooding Mapping Performance Comparison on the Data Sets

VV
+Diff

VH
+Diff

DUAL
+Diff

DUAL
+Diff_SD2D0.5

IW01 0.9677 0.9651 0.9754 0.9810
0.8045 0.7226 0.8388 0.8849
0.8922 0.9489 0.9313 0.9393
0.8461 0.8204 0.8826 0.9113

IW02 0.9861 0.9897 0.9916 0.9907
0.8947 0.7831 0.9087 0.9172
0.7970 0.9647 0.8932 0.8678
0.8430 0.8645 0.9009 0.8918

IW03 0.9350 0.9685 0.9684 0.9741
0.6395 0.8996 0.9184 0.9541
0.6507 0.7889 0.7793 0.8025
0.6451 0.8406 0.8432 0.8718

IW04 0.9817 0.9932 0.9904 0.9912
0.9143 0.8529 0.9301 0.8721
0.6593 0.9324 0.8066 0.8598
0.7661 0.8909 0.8640 0.8659

IW05 0.9647 0.9719 0.9728 0.9824
0.8888 0.9151 0.9641 0.9397
0.6193 0.6763 0.6718 0.7790
0.7300 0.7778 0.7918 0.8518

SM01 0.9866 0.9823 0.9912 0.9915
0.8580 0.6750 0.8816 0.8909
0.8867 0.9907 0.9492 0.9467
0.8721 0.8029 0.9142 0.9180

Weighted
Average

0.9681 0.9771 0.9800 0.9842

0.8306 0.8219 0.9098 0.9118

0.7363 0.8649 0.8230 0.8575

0.7737 0.8313 0.8583 0.8815

aThe bold emphasis signifies the best performance in each row.

10.1029/2019JC015577Journal of Geophysical Research: Oceans

LIU ET AL. 9108



temporal evolvement of flooding in this area. The flooded areas with the highest probability are the last
disappeared flooded areas. The areas with probability lower than zero are the areas without data in one
product.

Normally, the flooded areas shrink over time in the product sequence as described by the flooded area pro-
portions in the lower middle part of Figure 5. The shrinking rate is about 1% of the analyzed area per day
(about 23 km2 per day). By analyzing the product sequence, however, we discovered a phenomenon of

Figure 4. Geospatial analysis of the flooding product of the SM01 data set. (a) Ground truth. (b) Flooding mapping product with the SARCFMNet. (c) Generated
flooding heat map superimposed onto the preevent SAR imagery. (d) Elevation from the National Elevation Dataset. (e) Land cover from the 2016 National Land
Cover Database. (f) Water occurrence from the Global Surface Water Mapping Dataset. (g) Legend of (e). (h) Flooded area elevation and scene elevation distri-
butions. (i) Land cover type proportions in the flooded areas. (j) Water occurrence distribution in the flooded areas.
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delayed flooding. There is one flooded area, which is not shown in the product of IW01 but shown in the
product of IW05. This area is highlighted by the red rectangle. The temporal change of flooding from IW01
to IW05 is shown in the lower left part of Figure 5. This area represents Glen Flora, Texas. We search for
the local news (Glen Flora Emporium, n.d.) and find that, in the evening of August 29 (local time), the
Colorado River (Texas) overflowed its banks and began flowing through and across Glen Flora. This is
why the flooded area is not captured by IW01 (00:26 UTC, 29 August) but captured by IW05 (12:22 UTC,
30 August).

4.3. Wind Influence Analysis

In this part, we discuss a problem which is seldom considered in flooding mapping studies: the wind influ-
ence. This is a practical problem in hurricane‐induced coastal flooding mapping. For coastal flooding map-
ping, we may face a situation: The hurricane has already caused heavy rain and flooding in the coastal area,
but it has not left the area and still brings strong wind. In this situation, the strong wind might interfere with
the flooding mapping in this scene, because the strong wind could increase the water areas' NRCS. As dis-
cussed above, the postevent image of the IW01 pair is influenced by wind. Here, we use an experiment to
discuss the wind influence in the DCNN‐based coastal flooding mapping.

From the data sets IW01 and IW03, we randomly select 400 samples from each to generate two data sets,
IW01_selected and IW03_selected, respectively. We train two models on IW01_selected and IW03_selected
with the DUAL+Diff design. Then, we test the two models on the data sets IW01 and IW03. The results are
listed in Table 3. In this table, the column name indicates on which data set the model is trained, and the
row name indicates on which data set the model is tested. In each block, there are three numbers. They are

classification accuracy, recall, and precision. On the diagonal of the
table, the results represent the situation of training and testing on the
same scene. The performances are good. But the performances outside
the diagonal drop drastically. The model trained on IW01_selected and
tested on IW03 shows low precision. This is because the model is trained
on the IW01_selected, and the postevent image of the IW01_selected is
influenced by a strong wind. In this case, the trained model tends to
“think” the water areas in the postevent image should have higher
NRCS values, which causes many false alarms in the IW03 and lower
precision. Similarly, we can explain why the model trained on the
IW03_selected and tested on the IW01 has low recall.

Figure 5. Temporal analysis of the flooding mapping products. Upper: flooding duration probability map. Lower left: temporal change of flooding products from
IW01 to IW05 is consistent with the flooding fact in Glen Flora, Texas. Lower middle: flooded area proportions in the flooding product sequence normally show the
flooding shrinking. Lower right: flooding product sequence calendar.

Table 3
Wind Influence Analysis Results

IW01_selected IW03_selected

IW01 0.9875 0.9599
0.9405 0.6722
0.9459 0.9502

IW03 0.9596 0.9887
0.9252 0.9441
0.7186 0.9347

aItalic emphasis signifies some performance results.
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This experiment demonstrates the wind influence in the DCNN‐based
coastal flooding mapping. As listed in Table 2, since the S2000 data set
is generated from different wind conditions, the trained model has more
balanced performances. We could still see the wind influence from the
results, especially from the results on the IW01 and IW03. This indicates
that the DCNNmodels considering different wind conditions will be more
robust and practical.

4.4. Cost‐Sensitive Loss Analysis

In this part, we still use the two data sets IW01_selected and
IW03_selected from the last part to discuss the cost‐sensitive losses for
the DCNN‐based coastal flooding mapping. First, we use the default
BCE loss with the DUAL+Diff design and the results are listed in
Table 4. In each block, there are three numbers. They are classification
accuracy, recall, and precision. We can observe, in the coastal flooding
mapping, the BCE loss can balance precision and recall.

In practical use, a cost‐sensitive loss is usually needed. If the cost of low
recall is very high, that is, the cost of missed detections is very high, the

trained model needs to improve its recall as much as possible. Similarly, if the cost of low precision is very
high, that is, the cost of false alarms is very high, the trained model needs to improve its precision as much
as possible. In the DCNN models, the cost‐sensitive losses can satisfy these needs. One way of designing
the cost‐sensitive loss is the α‐balanced BCE (αBBCE) loss (Lin et al., 2017):

LαBBCE ¼ −
1
N

∑
N

i¼1
αyilogbyi þ 1−αð Þ 1−yið Þlog 1−byið Þf g (1)

where yi denotes the ground‐truth label of the ith pixel, 1 for flooding and 0 for background, byi denotes the
predicted probability of the ith pixel being flooding, andN is the pixel number. α∈ [0,1] is the weight. As α is
higher, the model's accuracy in flooded areas is given a greater weight during training. A higher value for α is
reasonable, considering that the pixel number of flooding is much smaller than that of the background. In
this experiment, α is set to 0.8. As listed in Table 4, the αBBCE loss is effective. The recall is improved at
the expense of precision.

Another way of designing the cost‐sensitive loss is the Fβ loss:

LFβ ¼ 1− 1þ β2
� � P⋅R

β2⋅P þ R|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fβ score

(2)

where P denotes precision and R denotes recall. Minimizing the Fβ loss equals maximizing the Fβ score,
where β is a positive real weight. If β > 1, optimizing recall is given a greater weight during training. If β
< 1, optimizing precision is given a greater weight. The results of the Fβ loss, β = 2 and β = 0.5, are listed in
Table 4. The results demonstrate the Fβ loss is effective for adaptive performance adjustment according to
performance costs. For β = 2, recall is improved at the expense of precision. For β = 0.5, precision is
improved at the expense of recall.

In this part, we discuss the cost‐sensitive loss designs for the DCNN‐based coastal flooding mapping. These
designs are adaptive according to performance costs. It is worth noting that there are two expenses: (1) there
is performance trade‐off and (2) there is one more hyperparameter should be predefined.

5. Conclusions

In this paper, we present the SARCFMNetmodel tomine bitemporal and dual‐polarization SAR image infor-
mation for coastal flooding mapping. The SARCFMNet is based on the U‐Net framework, but we specially
tailor it for the SAR coastal flooding mapping problem, with two modifications: the physics‐aware input

Table 4
Cost‐Sensitive Loss Analysis Results

Trained on
IW01_selected, Tested

on IW01

Trained on
IW03_selected, Tested

on IW03

BCE 0.9875 0.9887
0.9405 0.9441
0.9459 0.9347

αBBCE (α = 0.8) 0.9785 0.9846
0.9858 0.9848
0.8453 0.8670

Fβ (β = 2) 0.9741 0.9540
0.9724 0.9808
0.8242 0.6720

Fβ (β = 0.5) 0.9835 0.9798
0.8838 0.8374
0.9635 0.9372

aItalic emphasis signifies some performance results.
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information design and the regularization. The proposed SARCFMNet is applied to the mapping and impact
analysis of the coastal inundation caused by Hurricane Harvey near the Houston area. After processing a

total area of 140,000 km2 from six pairs of Sentinel‐1 SAR images, the SARCFMNet model achieves an accu-
racy rate of 0.98 and an F1 score of 0.88. It shows better andmore robust performance, compared to the classic
and widely applied U‐Net model. The SARCFMNet model is more suitable for the SAR coastal inundation
mapping task. Based on the mapping products, the geospatial analysis of Harvey‐caused inundation is
performed and shows its huge impact on agriculture. The multitemporal analysis calculates the inundation
shrinking rate and discovers a phenomenon of delayed inundation in Glen Flora, Texas. In addition, the
wind influence is revealed in the DCNN‐based method, which indicates the DCNN models considering
wind influence will be more practical. The cost‐sensitive losses for the DCNN‐based coastal flooding map-
ping are explored, which is useful for more adaptive designs according to performance costs. In the
SARCFMNetmodel, the features for robust classification aremined from data automatically, instead of being
predesigned and predefined. This indicates, in other multitemporal SAR imagery classification applications,
the proposedmodel can also be utilized. The users only need tomodify the training samples according to their
actual problems.

Data Availability Statement

The Sentinel‐1 data used in this study are available from the Copernicus Open Access Hub. Registered users
can download these data from the Hub's online service (https://scihub.copernicus.eu/) for free. The USGS
National Elevation Dataset, the National Land Cover Database, and the Global Surface Water Mapping
Dataset used in this study are available from the GEE. Registered users can download these data from the
GEE's online service (https://code.earthengine.google.com/) for free. The Copernicus EMS Rapid Mapping
products used in this study are available from the Copernicus EMS. Users can download these data from
the EMS's online service (https://emergency.copernicus.eu/mapping/list‐of‐components/EMSR229) for free.
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